Package: CoTiMA 0.8.0

CoTiMA: Continuous Time Meta-Analysis ('CoTiMA')

The 'CoTiMA' package performs meta-analyses of correlation matrices of repeatedly measured variables taken from studies that used different time intervals. Different time intervals between measurement occasions impose problems for meta-analyses because the effects (e.g. cross-lagged effects) cannot be simply aggregated, for example, by means of common fixed or random effects analysis. However, continuous time math, which is applied in 'CoTiMA', can be used to extrapolate or intrapolate the results from all studies to any desired time lag. By this, effects obtained in studies that used different time intervals can be meta-analyzed. 'CoTiMA' fits models to empirical data using the structural equation model (SEM) package 'ctsem', the effects specified in a SEM are related to parameters that are not directly included in the model (i.e., continuous time parameters; together, they represent the continuous time structural equation model, CTSEM). Statistical model comparisons and significance tests are then performed on the continuous time parameter estimates. 'CoTiMA' also allows analysis of publication bias (Egger's test, PET-PEESE estimates, zcurve analysis etc.) and analysis of statistical power (post hoc power, required sample sizes). See Dormann, C., Guthier, C., & Cortina, J. M. (2019) <doi:10.1177/1094428119847277>. and Guthier, C., Dormann, C., & Voelkle, M. C. (2020) <doi:10.1037/bul0000304>.

Authors:Christian Dormann [aut, cph], Markus Homberg [aut, com, cre], Olga Diener [ctb], Christina Guthier [ctb], Manuel Voelkle [ctb]

CoTiMA_0.8.0.tar.gz
CoTiMA_0.8.0.zip(r-4.5)CoTiMA_0.8.0.zip(r-4.4)CoTiMA_0.8.0.zip(r-4.3)
CoTiMA_0.8.0.tgz(r-4.4-any)CoTiMA_0.8.0.tgz(r-4.3-any)
CoTiMA_0.8.0.tar.gz(r-4.5-noble)CoTiMA_0.8.0.tar.gz(r-4.4-noble)
CoTiMA_0.8.0.tgz(r-4.4-emscripten)CoTiMA_0.8.0.tgz(r-4.3-emscripten)
CoTiMA.pdf |CoTiMA.html
CoTiMA/json (API)

# Install 'CoTiMA' in R:
install.packages('CoTiMA', repos = c('https://cotima.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cotima/cotima/issues

Datasets:

On CRAN:

5.41 score 4 stars 562 downloads 25 exports 133 dependencies

Last updated 3 months agofrom:c774b378f3. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winWARNINGNov 01 2024
R-4.5-linuxWARNINGNov 01 2024
R-4.4-winWARNINGNov 01 2024
R-4.4-macWARNINGNov 01 2024
R-4.3-winWARNINGNov 01 2024
R-4.3-macWARNINGNov 01 2024

Exports:CoTiMAStanctArgsctmaBiGctmaCompFitctmaCorRelctmaEmpCovctmaEqualctmaFitctmaFitListctmaFitToPrepctmaGetPubctmaInitctmaLCSctmaMMtoCINTctmaOptimizeFitctmaOptimizeInitctmaOTLctmaPlotctmaPlotCtsemModctmaPowerctmaPrepctmaPubctmaRedHetctmaShapeRawDatactmaStdParamsctmaSV

Dependencies:abindarmaskpassbackportsBHbootcachemcallrcheckmateclicodacOdecodetoolscolorspacecpp11crayonctsemcurldata.tableDerivdescdigestdistributionaldoParalleldplyrevmixexpmfansifarverfastmapforeachgenericsggforceggplot2ggraphggrepelglueGPArotationgraphlayoutsgridExtragslgtablehttrigraphinlineisobanditeratorsjsonlitelabelinglatticelavaanlifecyclelme4loomagrittrMASSMatrixmatrixStatsMBESSmemoisemgcvmimimeminqamizemnormtmunsellmvtnormnleqslvnlmenloptrnumDerivOpenMxopensslopenxlsxpbivnormpillarpkgbuildpkgconfigplyrpolyclipposteriorprocessxpspsychpurrrquadprogQuickJSRR.cacheR.methodsS3R.ooR.utilsR6rbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRdpackrlangrootSolverpfRPushbulletrstanrstantoolsrvestscalesscholarselectrsemsemToolsSparseMStanHeadersstatmodstringistringrsyssystemfontstensorAtibbletidygraphtidyrtidyselecttweenrutf8vctrsviridisviridisLitewithrxml2zcurvezip

R packages: CoTiMA

Rendered fromCoTiMA.pdf.asisusingR.rsp::asison Nov 01 2024.

Last update: 2024-04-25
Started: 2024-04-25

Readme and manuals

Help Manual

Help pageTopics
A128 example matrixA128
A313 example matrixA313
ageM1 example vectorageM1
ageM128 example vectorageM128
ageM18 example vectorageM18
ageM201 example vectorageM201
ageM313 example vectorageM313
ageM32 example vectorageM32
ageM4 example vectorageM4
ageSD1 example vectorageSD1
ageSD128 example vectorageSD128
ageSD18 example vectorageSD18
ageSD201 example vectorageSD201
ageSD313 example vectorageSD313
ageSD32 example vectorageSD32
ageSD4 example vectorageSD4
alphas128 example vectoralphas128
alphas313 example vectoralphas313
burnout1 example vectorburnout1
burnout128 example vectorburnout128
burnout18 example vectorburnout18
burnout201 example vectorburnout201
burnout313 example vectorburnout313
burnout32 example vectorburnout32
burnout4 example vectorburnout4
combineVariables128 example vectorcombineVariables128
combineVariablesNames128 example vectorcombineVariablesNames128
ctmaBiG-object reproducing results of Guthier et al. (2020)CoTiMABiG_D_BO
ctmaFit-object with a 'full' CoTiMA of 3 studiesCoTiMAFullFit_3
ctmaFit-object with a 'full' CoTiMA of 6 studiesCoTiMAFullFit_6
ctmaFit-object with a 'full' CoTiMA of 6 studiesCoTiMAFullFit_6_new
1st fitted ctmaFit-object in a series of 2 to test equality of 2 cross effectsCoTiMAFullInv23Fit_6
2nd fitted ctmaFit-object in a series of 2 to test equality of 2 cross effectsCoTiMAFullInvEq23Fit_6
ctmaInit-object with of 3 primary studiesCoTiMAInitFit_3
ctmaInit-object with 6 primary studiesCoTiMAInitFit_6
ctmaInit-object with 6 primary studiesCoTiMAInitFit_6_new
ctmaInit-object with a 'full' CoTiMA of 6 studies using NUTS samplerCoTiMAInitFit_6_NUTS
ctmaInit-object created by Guthier et al. (2020) with 48 primary studiesCoTiMAInitFit_D_BO
ctmaFit-object with a categorical moderator of the full drift matrixCoTiMAMod1onFullFit_6
ctmaFit-object with a categorical moderator of the full drift matrixCoTiMAMod1onFullFit_6_cats12
ctmaFit-object with a continuous moderator of 2 cross effectsCoTiMAMod2on23Fit_6
ctmaFit-object with with only one cross effect and this one set equal across primary studiesCoTiMAPart134Inv3Fit_6
ctmaPower-object reproducing results of Guthier et al. (2020)CoTiMAPower_D_BO
This are preset argumentsCoTiMAStanctArgs
ctmaPrep-object created with 3 primary studiesCoTiMAstudyList_3
ctmaPrep-object created with 6 primary studiesCoTiMAstudyList_6
ctmaPrep-object created with 6 primary studiesCoTiMAstudyList_6_new
country1 example vectorcountry1
country128 example vectorcountry128
country18 example vectorcountry18
country201 example vectorcountry201
country313 example vectorcountry313
country32 example vectorcountry32
country4 example vectorcountry4
ctmaAllInvFitctmaAllInvFit
ctmaBiGctmaBiG
ctmaBiGOMXctmaBiGOMX
ctmaCombPRawctmaCombPRaw
ctmaCompFitctmaCompFit
ctmaCorRelctmaCorRel
ctmaEmpCovctmaEmpCov
ctmaEqualctmaEqual
ctmaFitctmaFit
ctmaFitListctmaFitList
ctmaFitToPrepctmaFitToPrep
ctmaGetPubctmaGetPub
ctmaInitctmaInit
ctmaLabelsctmaLabels
ctmaLCSctmaLCS
ctmaMMtoCINTctmaMMtoCINT
ctmaOptimizeFitctmaOptimizeFit
ctmaOptimizeInitctmaOptimizeInit
ctmaOTLctmaOTL
ctmaPlotctmaPlot
ctmaPlotCtsemModctmaPlotCtsemMod
ctmaPowerctmaPower
ctmaPRawctmaPRaw
ctmaPrepctmaPrep
ctmaPubctmaPub
ctmaRedHetctmaRedHet
ctmaSaveFilectmaSaveFile
ctmaScaleInitsctmaScaleInits
ctmaShapeRawDatactmaShapeRawData
ctmaStanResamplectmaStanResample
ctmaStdParamsctmaStdParams
ctmaSVctmaSV
delta_t1 example vectordelta_t1
delta_t128 example vectordelta_t128
delta_t18 example vectordelta_t18
delta_t201 example vectordelta_t201
delta_t228 example vectordelta_t228
delta_t313 example vectordelta_t313
delta_t32 example vectordelta_t32
delta_t4 example vectordelta_t4
demands1 example vectordemands1
demands128 example vectordemands128
demands18 example vectordemands18
demands201 example vectordemands201
demands313 example vectordemands313
demands32 example vectordemands32
demands4 example vectordemands4
dl_link example pathdl_link
empcov1 example matrixempcov1
empcov128 example matrixempcov128
empcov18 example matrixempcov18
empcov201 example matrixempcov201
empcov313 example matrixempcov313
empcov32 example matrixempcov32
empcov4 example matrixempcov4
malePercent1 example vectormalePercent1
malePercent128 example vectormalePercent128
malePercent18 example vectormalePercent18
malePercent201 example vectormalePercent201
malePercent313 example vectormalePercent313
malePercent32 example vectormalePercent32
malePercent4 example vectormalePercent4
moderator1 example vectormoderator1
moderator128 example vectormoderator128
moderator18 example vectormoderator18
moderator201 example vectormoderator201
moderator313 example vectormoderator313
moderator32 example vectormoderator32
moderator4 example vectormoderator4
moderatorLabels example vectormoderatorLabels
moderatorValues example vectormoderatorValues
occupation1 example vectoroccupation1
occupation128 example vectoroccupation128
occupation18 example vectoroccupation18
occupation201 example vectoroccupation201
occupation313 example vectoroccupation313
occupation32 example vectoroccupation32
occupation4 example vectoroccupation4
pairwiseN128 example vectorpairwiseN128
plot.CoTiMAFitplot.CoTiMAFit
pubList_8 example listpubList_8
rawData228 example listrawData228
recodeVariables128 example vectorrecodeVariables128
results128 example listresults128
sampleSize1 example vectorsampleSize1
sampleSize128 example vectorsampleSize128
sampleSize18 example vectorsampleSize18
sampleSize201 example vectorsampleSize201
sampleSize313 example vectorsampleSize313
sampleSize32 example vectorsampleSize32
sampleSize4 example vectorsampleSize4
source1 example vectorsource1
source128 example vectorsource128
source18 example vectorsource18
source201 example vectorsource201
source313 example vectorsource313
source4 example vectorsource4
summary.CoTiMAFitsummary.CoTiMAFit
targetVariables1 example vectortargetVariables1
targetVariables128 example vectortargetVariables128
targetVariables313 example vectortargetVariables313
targetVariables4 example vectortargetVariables4
variableNames128 example vectorvariableNames128
variableNames18 example vectorvariableNames18
variableNames201 example vectorvariableNames201
variableNames32 example vectorvariableNames32